Ein Schmankerl für Mathe-Liebhaber und die es noch werden wollen


NullRezension von Gerfried Pongratz: Albrecht Beutelspacher: „Null, unendlich und die wilde 13 – Die wichtigsten Zahlen und ihre Geschichten“ (© Verlag C.H. Beck, München, 2020, ISBN 978-3-406-74967-4.)

 

„Zahlen sind ein Schlüssel zur Welt“. Wenn ein Universitätsprofessor dies feststellt, sollte es stimmen. Oder doch nicht? Laut Umfragen ist Mathematik das bei weitem unbeliebteste Fach bei Schülern und über 80% der Erwachsenen gestehen, mit mathematischen Fragen nicht, oder nur sehr schwer zurecht zu kommen. Der renommierte, vielfach ausgezeichnete Mathematiker der Universität Gießen, Albrecht Beutelspacher, will dies ändern; auf 208 Seiten führt er die Leserinnen und Leser auf kurzweilig spannende Weise durch die Welt der Zahlen. Er stellt Fragen und gibt Antworten zu den spezifischen Bedeutungen und Charakteristika von Zahlen und mathematischen Funktionen, er erzählt dazu Geschichte und Geschichten und erklärt nebenbei auch ihre kulturgeschichtliche Bedeutung und ihren alltäglichen Gebrauch.

 

Das Inhaltsverzeichnis, beginnend bei der Zahl 1 („Es kann nur eine geben“) beschreibt in den Überschriften bereits die Rollen, die Zahlen in ihrer individuellen Bedeutung, bzw. als Beitrag zur Lösung praktischer Probleme spielen; so ist z.B. 2 „Die Zahl, die den Unterschied macht“, 3 „Die erste Ganzheit“, 4 „Die Zahl der Orientierung“, 5 „Die Zahl der Natur“ usw. Neben den jeweiligen Zahlen werden dazu passende Themen behandelt, wie z.B. Binär- und Dreieckszahlen, vollkommene und irrationale Zahlen, Pascalsches Dreieck, platonische Körper, der „Goldene Schnitt“, „das Imaginäre“ und – last not least – die Unendlichkeit, wobei auch ungelösten mathematischen Problemen Raum eingeräumt wird.

 

Aus der Vielzahl mathematischer Beispiele einige Kostproben:

  • Das Fünfeck (Pentagramm) besitzt große geistesgeschichtliche Bedeutung, weil an ihm durch die Pythagoreer (Hippasa um 500 v.Chr.) eine irrationale Zahl entdeckt wurde.
  • Anhand der Zahl 7 wird die Bedeutung von Primzahlen als wichtigste natürliche Zahlen erklärt.
  • Für Platon war die Tatsache, dass es nur fünf reguläre Körper (Tetraeder, Würfel, Oktaeder, Ikosaeder, Dodekaeder) gibt, so bemerkenswert, dass er diese Körper mit den antiken Elementen (Feuer, Erde, Luft, Wasser, Universum) identifizierte; sie werden „platonische Körper“ genannt.
  • Die „Neunerprobe“ als Test auf die Korrektheit einer Addition oder Multiplikation (von Fibonacci beschrieben und von Adam Ries populär gemacht) wird anhand von Beispielen demonstriert.
  • Die Null als „Symbol für Nichts“ erfährt geschichtliche Würdigung und wird in ihrer Bedeutung in den Stellenwertsystemen ausführlich dargestellt. In Europa via Fibonacci im Jahr 1202 angekommen, hat sie sich im Dezimalsystem 1522 durch Adam Ries durchgesetzt, wobei die Zahl 10, an der sich die Zahlensysteme fast aller Kulturen seit Babylon orientieren, eine wichtige Grundlage bildete.
  • „Im Pascalschen Dreieck, als Anordnung von Zahlen, die sich fast von selbst ergibt, lassen sich viele Geheimnisse entdecken“, der Autor verblüfft mit spannenden Beispielen.
  • „Hochzusammengesetzte“ Zahlen wie die 12, die in der Geometrie prominent im Dodekaeder – von Platon mit dem Universum identifiziert – auftaucht, führen über den „genialsten Mathematiker aller Zeiten“ – Srinivasa Ramanujan (1887-1920) – zu der nach ihm benannten Zahl 1.729 als kleinste Zahl, die man auf zwei verschiedene Weisen als Summe von zwei dritten Potenzen schreiben kann.
  • Die im Buchtitel vorkommende „wilde 13“ wurde und wird von Triskaidekaphobikern (z.B. Arnold Schönberg) als Unglücksbringerin gefürchtet, sie verfügt als Primzahl 13=12+1 auch über besondere Eigenschaften, die schon in biblischen Berichten eine Rolle spielten und z.B. auch in der Biologie (erläutert an Zikaden, die in einem 13jährigen Rhythmus erscheinen) bei der Abwehr von Fressfeinden Bedeutung besitzen.
  • Die Zahl 14 findet sich bei Sebastian „B+A+C+H“ in vielerlei Formen, nicht zuletzt in der „Kunst der Fuge“.

 

Die im Buch enthaltene Liste besonderer Zahlen mit rechnerischen Beispielen und dazu gehörenden anekdotischen Begebenheiten ist lang und erhellend. Dazu gehören auch die Gauß-Zahl 17 und die Fibonacci-Zahlen als Naturphänomene sowie die paradoxe Geburtstagszahl 23, die gemeinsam mit 28 auch im „Biorhythmus“ eine Rolle spielt. Die Zahl 42 „als Antwort auf alle Fragen“ bei Douglas Adams, die „beste Zahl 60“, die vor 4.000 Jahren bei der Erfindung des Stellenwertsystems in Mesopotamien wichtig war und die Dreieckszahl 153, die, wie auch 666 als Zahl des Tieres, bereits in der Bibel auftaucht, werden ebenso erläutert, wie auch die Cliffhanger-Zahl 1.001 und die Zahl 1.679 fürs „Extraterrestrische“. 65.537 als bisher bekannte größte Primzahl und 5,607.249 als letzte Zahl, die Roman Opalka am 6. August 2011 als letzte gemalt hatte, und damit zu einer Kultfigur wurde, kommen ebenso zur Sprache wie die scheinbaren Paradoxien negativer Zahlen (beginnend mit -1 „als absurde Zahl“).

 

Ägyptische Mathematiker konnten bereits vor über 4.000 Jahren Bruchzahlen darstellen, die Entdeckung der Dezimalbrüche erfolgte allerdings erst 1585 durch den flämischen Buchhalter Simon Stevin, der damit neue mathematische Horizonte erschloss. Große Bedeutung besitzen auch die Quadratwurzel aus 2 als „irrationale Zahl per excellence“ und die dritte Wurzel aus 2 in der analytischen Geometrie mit der „Verdoppelung des Würfels“. Letzteres, auch „Delisches Problem“ genannt, gehört mit der „Quadratur des Kreises“ und der „Dreiteilung des Winkels“ zu den berühmten drei ungelösten Problemen der antiken Mathematik, wobei der Autor schlüssig und spannend erläutert, warum diese nach wie vor unlösbar sind.

 

Weitere sehr bemerkenswerte Kapitel des Buches bilden die Ausführungen zum „Goldenen Schnitt“, zur „geheimnisvollen Transzendenten“ Kreiszahl Pi und zur von Leonhard Euler gefundenen, irrationalen, transzendenten, reellen Zahl e („Zahl des exponentiellen Wachstums“) als Basis des natürlichen Logarithmus und der (natürlichen) Exponentialfunktion. Kapitel zur „Eulerschen Identität“ i („Ist das Imaginäre vorstellbar?) und zur Unendlichkeit („Größer als alles“), die in der Mathematik nur als Frage im Plural gestellt werden kann und zu den Rechenregeln einer „transfiniten Arithmetik“ führt, bilden den Abschluss interessanter Erläuterungen, die den Lesern auch Einiges abverlangen.

 

Mit „Null, unendlich und die wilde 13“ legt Albrecht Beutelspacher ein Buch vor, das mit Humor und grundlegendem Wissen weitgespannte Einsichten in die Welt der Zahlen, bzw. der Mathematik mit ihren wichtigsten Konstanten, bietet. Querverweise zu Natur und Technik bis hin zur Philosophie, garniert mit zahlreichen Beispielen, die allerdings von Nichtmathematikern nicht immer leicht nachzuvollziehen sind, ergänzen die Ausführungen und widerlegen das Vorurteil, Mathematik sei „trockene Wissenschaft“. Die Ankündigung am Einband und im Vorwort des Buches, dass sich die Lektüre „ganz ohne mathematische Vorkenntnisse erschließt“, ist für „Normalverbraucher“ euphemistisch übertrieben; mit solidem Grundwissen und vor allem mit der Bereitschaft, Hirnschmalz zu investieren, kann das Buch jedoch bei einschlägig Interessierten Liebe zur Mathematik wecken, bzw. bereits vorhandenes mathematisches Wissen vertiefen und damit zusammenhängende wichtige Erkenntnisse vermitteln.

Gerfried Pongratz 6/2020